MATHEMATICA MORAVICA
VoL. 22, No. 2 (2018), 41-57 doi: 10.5937/MatMor1802041B

Different common fixed point theorems of integral
type for pairs of subcompatible mappings

HAKIMA BOUHADJERA®

ABSTRACT. In this paper, a general common fixed point theorem for
two pairs of subcompatible mappings satisfying integral type implicit
relations is obtained in a metric space. Our result improves several re-
sults especially the result of Pathak et al. [6]. Also, another common
fixed point theorem of Gregus type for four mappings satisfying a con-
tractive condition of integral type in a metric space using the concept
of subcompatibility is established which generalizes the result of Djoudi
and Aliouche [1] and others. Again a third common fixed point theorem
for two pairs of near-contractive subcompatible mappings is given which
enlarges the result of Mbarki [5] and references therein.

1. INTRODUCTION

Let (X,d) be a metric space and let f, g be two mappings from X into
itself. f and g commute if fgxr = gfx for all x € X.

This commutativity was weakened in 1982 by Sessa [7] with the notion
of weakly commuting mappings. f and g above are weakly commuting if
d(fgz,gfz) < d(gz, fr) for all z in X.

Later on, Jungck [3| enlarged the class of commuting and weakly commut-
ing mappings by compatible mappings which asserts that the above map-
pings f and g are compatible if lim d( f9xn, gfry) = 0 whenever {z,} is a

sequence in X such that hm fxn = hm 0 gLy = t for some t € X.

This concept was further 1mproved by J ungck [4] with the notion of weakly
compatible mappings. f and g are weakly compatible if ft = gt for some
t € X implies that fgt = gft.

Recently in 2007, Pathak et al. [6] stated and proved a general com-
mon fixed point theorem of integral type for two pairs of weakly compatible
mappings satisfying integral type implicit relations in a symmetric space.
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Our aim here is to improve and extend the result of [6] by using the new
concept of mappings called subcompatibility which enlarges the concept of
weakly compatible mappings.

We introduce the notion of subcompatible mappings as follows: Let f
and g be two self-mappings of a metric space (X,d). f and g are sub-
compatible if and only if there exists a sequence {z,} in X such that
lim fz, = lim gz, =t for some t € X and lim d(fgxn,gfz,) = 0.

n—oo n—oo n—oo

It is clear to see that weakly compatible mappings are subcompatible,

however the implication is not reversible.

Example 1.1. Let X = [0, 00) with the usual metric d. Define
fy9: X — X as follows

9 [ x+12, ifze]0,16]U(25,00),
Jo=a"and gz = { x+240, if z € (16,25].

Let {z,,} be a sequence in X defined by z,, = 441 forn € N* = {1,2,...}.
Then, we have

lim fr, = lima2=16= lim gz, = lim (z, + 12)
n—oo n—oo n—oo n—oo

and
fogrn = flzp+12) = (z, + 12)% = 256 as n — oo,
gft, = g(x2) =22 4+ 240 — 256 as n — co.

Therefore, li_>m d(fgxn,gfx,) = 0. Hence, f and g are subcompatible map-
n o

pings.
On the other hand, we have fx = gx if and only if z = 4 but

fg(4) = f(16) = 256 # 28 = g f(4) = g(16).
Thus, f and g are not weakly compatible.

For our first main result we need the following implicit relations.

2. IMPLICIT RELATIONS

Let Ry be the set of all nonnegative real numbers, ¥ be the family of
all ¢ : Ry — R Lebesgue-integrable and summable mappings and ® be
the set of all real continuous functions ¢ : Rﬁ — R satisfying the following
conditions:

(p1) for all u,v >0, if
p(u,v,0,u,0,utv)
o) | ()t <0 or
0

p(u,v,u,v,u+v,0)
@ [ b(t)dt <0,
0

we have u < v,
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p(u,u,0,0,u,u)
(p2) / P(t)dt > 0, for u > 0.
0

Example 2.1. Let p(t1, to, t3,t4, t5, tg) = t1—k max {tg,tg,t4, t5"2”6 }, where

k € (0,1) and ¢(t) = t. Then ¢ is continuous and ¥ is a Lebesgue-integrable
mapping which is summable. We have

(p1) Let w >0 and v > 0. If u > v then

o(u, v,v,u,0,u 4+ v) = @(u, v, u,v,u+ v,0)

u—+v
:uk‘max{u,v, 5 }

=u(l — k),
then

u(l—k) 1
/ tdt = —u*(1 -k)*<0
0 2

impossible, hence u < wv. If u = 0, then v < v.
(902) QO(U, u, 07 07 u, u) = U(]. - k?), SO

u(lfk) 1
/ tdt = —u*(1 —k)? >0,
0 2

for u > 0.

Example 2.2. (p(tl,tg,tg,t4,t5,t6) = (1 + Oétg)tl — amax {t3t4,t5t6}
— B max {tz,t37t4, %(tg, + t6)}, where « > 0 and 0 < f < 1 and ¥(t) = 1.

(¢1) Let uw > 0 and v > 0. Suppose that u > v, then
o(u,v,v,u,0,u 4+ v) = @(u,v,u,v,u+ v,0)
= (14 aw)u — amax {uv,0} — f max {v,u, u—;v}
=u(l = f),
then

w(1-p)
/ dt = u(l—B) <0,
0

which is impossible. Thus, © < v. If u = 0, then u < v.
(p2) @(u,u,0,0,u,u) =u(l — ), then

u(1-p)
/ dt=u(l—-p) >0, forallu>D0.
0

Now, we state and prove our main results. We begin by the first one.
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3. MAIN RESULTS
Theorem 3.1. Let f, g, h and k be four mappings of a metric space (X, d)
into itself such that
0 e(d(fx,gy),d(ha,ky),d(fz,hx),d(gy,ky),d(ky,fz),d(hz,gy))
v
0

for all x, y in X, where ¢ € ® and ¢ € V. Suppose that (f,h) and (g, k)
are subcompatible and h and k are continuous, then, f, g, h and k have a
unique common fized point.

p(t)dt <0,

Proof. Since the pairs (f, h) and (g, k) are subcompatible, then, there exist
two sequences {z,} and {y,} in X such that lim fz,, = lim hz, =t for
some t € X and lim d(fhx,, hfz,) =0; lim gy, = lim ky, = z for some
n—o0 n—oo n—oo
z € X and lim d(gkyn, kgyn) = 0.
n—oo
First we prove that z = t. Indeed, by inequality (1) we get

%(d(fwn79yn),d(hwn,kyn),d(fﬂcn,hxn),d(gyn,kyn),d(kymfxn),d(h:vn,gyn))
/ w(t)dit < 0.

0
Since ¢ is continuous, we obtain at infinity
e(d(t,2),d(t,2),0,0,d(z,t),d(t,2))
/‘ w(t) dt <0,
0
which contradicts (¢2) if d(¢,z) > 0. Then, z = t.
Since h is continuous, then h?z,, — ht, hfx, — ht. Also we have

d(fhan, ht) < d(fhan, hfza) + d(hfn, ht).

Since f and h are subcompatible, taking the limit as n — oo in the above
inequality we have lim fhx, = ht. The use of condition (1) gives
n—o0

Qo(d(fhxnvgyn)ad(thﬂ7kyn)7d(fhx’ﬂ7h2x’ﬂ)7d(gy"ﬂky")7d(ky"ﬂfh$")7d(h2xnvgyn))
/ Y(t)dt <0.
0

At infinity we obtain
e(d(t,2),d(t,2),0,0,d(z,t),d(t,2))
/‘ B(t) dt <0,
0
which contradicts (p2). Hence ht = t.
Again using (1) we get
/<ﬂ(d(ft7gyn),d(hukyn),d(ft,ht),d(gyn,kyn),d(’fyn,ft),d(ht,gyn))

W(t)dt < 0.
0

Taking the limit as n — oo, we get
/Lp(d(ft7t)707d(ft7t)707d(t7ft)70)

Y(t)dt <0,
0
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which implies d(ft,t) = 0 by using condition (yp). Thus, ft =t.

Now, since k is continuous we have lim k%y, = lim kgy, = kt. Also we
n—o0 n—oo

have

d(gkyn, kt) < d(gkyn, kgyn) + d(kgyn, kt).
Since the pair (g, k) is subcompatible we obtain at infinity nlgn;o gky, = kt.
Using condition (1) we have
/sa(d(ft,gkyn),d(ht,kan),d(ft,ht),d(gkynJ€2yn),d(kamft),d(ht,gkyn))

Y(t)dt <0.
0

When n tends to infinity, we get
/s@(d(t,kt)7d(t7kt)70,07d(kt,t),d(uk’t))

P(t)dt <0,
0

which contradicts (p2) when d(t, kt) > 0. Hence, kt = t.
If gt # t, using inequality (1) we have

o(d(ft,gt),d(ht,kt),d(ft,ht),d(gt,kt),d(kt,f1),d(ht,gt))
/ B(t) dt <0,
0
ie.,
»(d(t,gt),0,0,d(gt,t),0,d(t,gt))
/ W) dt <0,
0

which implies d(¢, gt) = 0 by using condition (¢,). Thus, gt = t.
For the uniqueness of common fixed point £, let z # ¢ be another common
fixed point of f, g, h and k. Then using (1) we obtain

p(d(ft,gz),d(ht,kz),d(ft,ht),d(gz,kz),d(kz,ft),d(ht,gz))
/ v dr <o,
0
that is,
p(d(t,2),d(t,2),0,0,d(z,t),d(t,z))
/ P(t)dt <0,
0
which is a contradiction of (p3). Therefore z = ¢. O

Corollary 3.1. Let (X, d) be a metric space and let f and h be two mappings
from X into itself satisfying the condition
/cp(d(fw,fy)vd(h:mhy)vd(fﬂffvhm),d(fyﬁy),d(hy,fm),d(hﬂmfy))

P(t)dt <0,
0

for all x, y in X, where ¢ € ® and ¢ € V. If h is continuous and the pair
(f,h) is subcompatible, then, f and h have a unique common fized point.

Corollary 3.2. Let (X,d) be a metric space and let f, g and h be three
self-mappings of X such that

(i) h is continuous,
(ii) the pairs (f,h) and (g,h) are subcompatible and
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(iii) the inequality

w(d(fz,gy),d(hz,hy),d(fz,hz),d(gy,hy),d(hy, fz),d(hz,9y))
/ B(t) dt <0,
0

holds for all z, y in X, where ¢ € ® and ¥ € V, then, f, g and h have a
unique common fized point.

Now, we give a generalization of Theorem 3.1.

Theorem 3.2. Let h, k and {fn}, cn- be mappings from a metric space
(X,d) into itself such that
(i) the pairs (fn,h) and (fny1,k) are subcompatible,
(i) the inequality
/W(d(fn%fnﬂy),d(hfr,ky)»d(fn%hm)7d(fn+1y7ky)»d(ky’fnfr)’d(hm,fnﬂy)))

() dt <0
0

holds for all x, y in X, each n € N*, p € ® and ¢y € V. If h and k are
continuous, then, h, k and { fn},cn+ have a unique common fized point.

Now, let F be the family of mappings F': Ry — Ry such that each F is
upper semi-continuous and F'(t) < t for all ¢ > 0 and let Q be the family of
w : Ry — Ry such that every w is a Lebesgue-integrable mapping which is
summable and [ w(t) d¢ > 0 for each e > 0.

In their paper [1|, Djoudi and Aliouche proved a common fixed point
theorem of Gregus type for four mappings satisfying a contractive condition
of integral type in a metric space using the concept of weak compatibility.

Our objective here is to improve, extend and generalize the result of [1]
by using the notion of subcompatibility.

Theorem 3.3. Let f, g, h and k be mappings from a metric space (X,d)
into itself satisfying inequality

d(f=,9y) P
(2) (/0 w(t) dt)
d(fz,hx)
+(1—a)max{/0 w(t)dt,

d(hx,ky)
a / w(t)dt
0
d(gy, k) d(fz.ha) T [ rd(feky) 2
/ w(t)dt,/ w(t) di / wtydt| |
0 0 0

p

d(hx,gy) 2 d(fz,ky) 3
[ ewa) ([T ewar)
0 0

for all x, y in X, where 0 < a < 1, p is an integer such thatp > 1, F € F
and w € Q. If h and k are continuous and the pairs (f,h) and (g,k) are
subcompatible, then, f, g, h and k have a unique common fized point.

P
< F
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Proof. Since the pair (f,h) as well as (g, k) is subcompatible, then, there

are two sequenses {z,} and {y,} in X such that lim hx, = lim fz, =t
n—oo n—oo

for some ¢t € X and lim d(fhx,,hfz,) = 0; lim gy, = lim ky, = z for
n—00 n—00 n—00
some z € X and lim d(gkyn, kgy,) = 0.
n— o0
First, we prove that z = t. If t # z, using inequality (2) we get

d(fl“nvgyn)
/ w(t)dt
0
d(hzn,kyn) p d(fzn,hzn)
a / w(t)dt | + (1 —a)max / w(t)dt,
0 0
d(gynyk’yn) d(fl‘n,h$n) % d(fxnakyn) %
/ w(t)dt, / w(t) di / oyt
0 0 0
1 1P
d(hxn,gyn) 2 d(fxn,kyn) 2
/ w(t)dt / w(t)dt
0 0

Letting n — oo, we obtain

d(t,z)
( / w(t)dt)
0
d(t,2) d(t,z) b
a(/o w(t)dt) +(1-a) (/0 w(t)dt) ]
d(t,2) P d(t,2) b
</0 w(t)dt) ] < (/0 w(t)dt) ,

d(t,z)

p

< F

p

p
F

IN

F

which is a contradiction, then [""* w(t)dt =0, hence z = ¢.

Since h is continuous, then we have h?z, — ht, hfz, — ht. Also, we
have

d(fhxna ht) < d(fhxn’ hfxn) + d(hfl‘n, ht)'
As f and h are subcompatible, letting n tends to infinity in the above in-

equality, we obtain lim fhx, = ht. The use of condition (2) gives

n—oo

d(fhzn,gyn)
/ w(t)dt
0

d(h2zp kyn) p d(fhan,h2z,)
a / w(t)dt | + (1 —a)max / w(t)dt,
0 0

p

< F
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1 1
d(gynkyn) d(fhmthl"n) 2 d(fhan,kyn) 2
/ w(t) dt, / w(t)dt / w(t)yde |
0 0 0
1 1\ D
d(hzxn,gyn) 2 d(fhan,kyn) 2
(/ w(t)dt) (/ w(t)dt) } ] .
0 0

We obtain at infinity

d(ht,t) p
( / 0 dt)
0
d(ht,t) p d(ht,t) p
a</0 w(t)dt) +(1-a) (/0 w(t)dt) ]
d(ht,t) p d(ht,t) p
(/0 w(t)dt) ] < (/0 w(t)dt) ,

which is a contradiction, therefore ht = t.
Again by inequality (2) we have

d(ft.gyn) b
/ w(t)dt
0
d(ht,kyn) p d(ft,ht)
a / w(t)dt| + (1 —a)max / w(t)dt,
0 0

1
d(gyn.kyn) d(ft,ht) 2 d(ft,kyn) 2
/ w(t) dt, / w(t) di / oyt
0 0 0
1 1yP

d(ht,gyn) 2 d(ft,kyn) 2

(/ w(t)dt) (/ w(t)dt) } ] :
0 0

At infinity we obtain
d(ft,t) p
(1—a) / w(t)dt
0

d(ft.t) b
( / w(t) dt> < F
0
d(ft.t) P
< (1—a) (/0 w(t)dt)
d(ft.t) P
< (/0 w(t)dt) ,

which is a contradiction. Hence ft =t.

F

IN

F

< F
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Now, since k is continuous, then, we have k?y,, — kt and kgy,, — kt and

d(gkyn, kt) < d(gkyn, kgyn) + d(kgyn, kt).

Since the pair (g,k) is subcompatible, we get at infinity lim gky, = kt.
n—oo
Using (2) we have

( d(ft.gkyn) )p
/ w(t)dt
0
d(ht,k%y,) p d(ft,ht)
a (/ w(t)dt) +(1—a)max{/ w(t) dt,
0 0
d(gkyn,k2yn) d(ft,ht) % d(ft,k2yn) %
/ w(t) dt, (/ 0 dt) (/ w(t) dt) ,
0 0 0
1 1\ P
d(htygkyn) 2 d(ftkayn) 2
</ w(t)dt) </ w(t)dt) } ] .
0 0

We get at infinity

d(t,kt) p
(/ w(t) dt)
0
d(t,kt) p d(t,kt) p
a(/o w(t)dt) +(1—-a) (/0 w(t)dt) ]
d(t,kt) p d(t,kt) p
(/0 w(t)dt) ] < (/0 w(t)dt) .

This contradiction implies that kt = ¢.
Suppose that gt # t, the use of inequality (2) gives

d(ft.gt) P
/ wt) dt
0
d(ht,kt) p d(ft,ht)
a / w(t)dt| + (1 —a)max / w(t)dt,
0 0

d(gt,kt) d(ft,ht) 3 [ rd(ftkt) 3
/ w(t) dt, </ w(t)dt) </ w(t)dt) ,
0 0 0
1 1\ P
d(ht,gt) 2 d(ft,kt) 2
(/ w(t)dt) (/ w(t)dt) }]
0 0

< F

F

IN

F

< F
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d(t,gt) P d(t,gt) P
(/0 w(t)dt) < Fla—a (/D w(t)dt) ]
t,gt p
< (1—a) (/Od( g)w(t)dt>
d(t.gt) P
< </0 w(t) dt) ,

which is a contradiction. Hence gt = t. Therefore t = z is a common fixed
point of both f, g, h and k.

ie.,

Suppose that f, g, h and k have another common fixed point z # ¢. Then,
by inequality (2) we get

d(ft.92) P
/ w(t)dt
0
d(ht,kz) P d(ft,ht)
a / w(t)dt| + (1 —a)max / w(t) dt,
0 0
1

< F

c\
2
o
x
o~
K
€
~
(oW
\‘PF
R
N
=3
=
ks
&
~
SN—
o,
~
~
(V]
VR
o\..
B
=
=
K
&
—~
N
o,
~
~_
NI

that is

d(t,z) p
( / w(t)d t) < F
0

This contradiction implies that z = t.
If f = ¢ and h = k in Theorem 3.3, we get the next result:

Corollary 3.3. Let f and h be two self-mappings of a metric space (X,d)
such that

d(fz,fy) P
/ () di
0
d(ha,hy) p d(fx,hx)
a / w(t)dt] + (1 —a)max / w(t)dt,
0 0

< F
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afyhy) d(fa ) 3 [ rd(fahy) >
/ w(t)dt, / w(t)dt / wt)yde |
0 0 0

d(hz,fy) 3 d(fx,hy) 2)”
/ w(t) dt / wt) dt ,
0 0

for all x, y in X, where 0 < a < 1, p is an integer such that p > 1, F € F
and w € Q. If h is continuous and the pair (f,h) is subcompatible, then, f
and h have a unique common fixed point.

If we let in Theorem 3.3 h = k, then we get the following corollary:

Corollary 3.4. Let f, g and h be three self-mappings of a metric space
(X,d) such that

d(fz,g9y)
/ wt) dt
0
d(ha,hy) p d(fz,hx)
a / w(t)dt ] + (1 —a)max / w(t)dt,
0 0

1

d(gy,hy) d(fz,hx) 2 d(fz,hy) 2
/ w(t) dt, / w(t)dt / w(t)ydt |
0 0 0

d(hz,gy) 2 d(fz,hy) AN
[ ewad ([T ewar) 1
0 0

forallz,y in X, where 0 < a < 1, p is an integer such thatp > 1, F' € F and
w € Q. If h is continuous and the pairs (f,h) and (g, h) are subcompatible,
then, f, g and h have a unique common fized point.

p

< F

The next result is a generalization of Theorem 3.3.

Theorem 3.4. Let h, k and {f,}nen+ be self-mappings of a metric space
(X, d) satisfying the inequality

d(fn,fns1y) P
/ () dt
0
d(ha,ky) p d( frnx,ha)
a / w(t)dt ]| + (1 —a)max / w(t)dt,
0 0

A frsr9,ky) d( f ) 2 [ rd(farky) 2
/ w(t) dt, / w(t)dt / w(t)dt|
0 0 0

< F
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p

d(hx’fn+1y) % d(fnw,ky) 2
/ w(t)dt / w(t) di ,
0 0

for all x, y in X, where 0 < a < 1, p is an integer such that p > 1, F € F
andw € Q. If h and k are continuous and the pairs (fn, h) and (fn+1,k) are
subcompatible, then h,k and {fn}nen+ have a unique common fized point.

We end our work by establishing another result which improves, extends
and generalizes especially the result of [5].

Theorem 3.5. Let (X, d) be a metric space, f, g, h and k be mappings from
X into itself and F be an upper semi-continuous function of [0, 00) into itself
such that F (t) = 0 if and only if t = 0 and satisfying inequality

F(d(fz,9y))
3) / w(t) dt
0

F (d(hz,ky))
< a(d(h, ky)) / w(t) dt
0

+ b(d(hz, ky)) w(t)dt

/F(d(hw,fz))JrF(d(ky,gy))
0
min{/ (d(hz,gy)),F (d(ky,fz))}
+ e(d(ha, ky) / w(t) dt,
0
for all z, y in X, where w € Q and a,b,c : [0,00) — [0,1) are upper semi-

continuous and satisfying the condition
a(t) +c(t) <1, t>0.

If the pairs (f,h) and (g,k) are subcompatible and h and k are continuous,
then, f, g, h and k have a unique common fized point.

Proof. Since the pairs (f, h) and (g, k) are subcompatible, then, there exist
two sequences {z,} and {y,} in X such that lim fz, = lim hz, =t for
n—oo n—oo

some t € X and li_)m d(fhxp, hfx,) = 0; li_}In 9Yn = li_>m ky, = z for some
z € X and li_}IIl d(gkyn, kgyn) = 0.

First, we prove that z = ¢t. Suppose that F (d(t,z)) > 0, using inequality
(3) we get

F(d(fzn.gyn)) F(d(h@n,kyn))
/ w(t)dt < a(d(hzy,kyy)) / w(t)dt
0 0

F(d(hzn,fon))+F (d(kyn,gyn))
b b(d(han, k) / w(t) dt
0
min{f (d(hzn,gyn)),F (d(kyn,fzn))}
+ c(d(hxn,kyn))/ w(t)dt.
0
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Taking the limit as n — oo, we obtain

F(d(t,2)) F(d(t,2))
/ wt)dt < [a(d(t,z)) + c(d(t, 2))] / w(t)dt
0 0

F(d(t,2))
< / w(t) dt,
0

which is a contradiction. Hence F (d(t, z)) = 0 which implies that d(t, z) = 0,
thus t = z.
Since h is continuous, then, we have h?z, — ht, hfz, — ht. Also, we
have
d(fhxp, ht) < d(fhxn, hfz,) + d(hfx,, ht).
As f and h are subcompatible, letting n tends to infinity in the above in-
equality, we obtain nl;rl;o fhxy, = ht. If F(d(ht,t)) > 0, the use of condition

(3) gives

F(d(fhangyn)) F(d(h22n kyn))
/ wt)dt < a(d(thn,kyn))/ w(t)dt
0 0

+ b(d(h*n, kyn)) w(t)dt

/F(d(h2zn,fhxn))—f—F(d(kyn,gyn))
0

/min{f (d(h22n,gyn)) T (d(kyn, fhan))}

+ cld(hzn, kyn)) w(t)dt.

0
Letting n — oo we obtain

F(d(ht,t)) F (d(ht,t))
/ wt)dt < [ald(ht,t)) + c(d(ht,t))] / w(t) dt
0 0

F (d(ht,t))
< / w(t)dt.
0

This contradiction implies that F (d(ht,t)) = 0 and hence ht = t.
Suppose that F (d(ft,t)) > 0, using condition (3) we get

F(d(ft,gyn)) F(d(ht,kyn))
/ W) dt < a(d(ht, kyy)) / w(t) di
0 0

(0, 70)) 1 (AR g9n)
b bt ky)) / w(t) di
0
min{F (d(ht,gyn)),F (d(kyn,ft))}
v od(ht, kyn)) / w(t) dt.
0

We obtain at infinity

F(d(ft.t) F(d(t,ft)) F(d(ft,t))
/ w(t)dt < b(O)/ w(t)dt < / w(t)dt,
0 0 0

which is a contradiction, hence F (d(ft,t)) = 0 which implies that ft =t¢.
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Now, since k is continuous, then, we have k?y, — kt, kgy, — kt and
d(gkyn, kt) < d(gkyn, kgyn) + d(kgyn, kt).
Since the pair (g, k) is subcompatible, we get at infinity nh_>1r010 gkyn = kt. We
claim that kt = t, if not, then by (3) we have

F(d(ftgkyn)) F(d(htvk2yn))
/ wt)dt < a(d(ht,k*y,)) / w(t)dt
0 0

F(d(ht, f£)+F (d(kyn.gkyn))
+ b(d(ht, k*yn)) / w(t)dt
0
min{ £ (d(ht,gkyn)),F (d(k*yn,ft))}
+ c(d(ht,K*y,)) / w(t)dt.
0

Taking the limit when n — co we have

F(d(t,kt)) F (d(t,kt))
/ w®)dt < [a(d(t, kt)) + c(d(t, k)] / () dt
0 0
F(d(tkt))
< / w(t)dt,
0

O(d(t,kt)) < [a(d(t, kt)) + c(d(t, kt))] B(d(t, kt))
< ®(d(t, kt)),

which is a contradiction, thus kt = ¢.
Suppose that F (d(t, gt)) > 0, then the use of inequality (3) yields

F (dlt.g1) (ot
/ w(t)dt = / w(t) di
0 0

I (d(ht,kt))
< a(d(ht, kt)) / w(t) dt
0

F (d(ht,ft))+F (d(kt,gt))
+ b(d(ht, kt) / (1) dt
0
min{ 7 (d(ht,g0)) F (dkt, 1))}
+ e(d(ht, kt)) /
0

F(d(t,gt)) F(d(t,gt))
- b(O)/ w(t)dt</ wt) dt,
0 0

which is a contradiction, thus F (d(t, gt)) = 0 which implies that d(t, gt) = 0
ie. gt =t.

Now, assume that there exists another common fixed point z of f, g, h
and k such that z # t. By inequality (3) we obtain

() F(a(t7)
/ o) dt = / w(t) dt
0 0

w(t)dt
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F(d(ht,k2))
< a(d(ht, k2)) / w(t) dt
0

F(d(ht,f))+F (d(kz,92))
+ b(d(ht, k=) / w(t)dt
0
min{F (d(ht,gz)),F (d(kz,ft))}
+ e(d(ht, k=) / w(t) dt
0

F(d(t,2))
= [a(d(t,2)) + c(d(t, 2))] /0 w(t)dt

F(d(t,2))
< / w(t)dt.
0

This contradiction implies that F (d(¢,z)) = 0 < d(t,z) = 0, hence z =
t. O

Remark 3.1. Theorem 3.5 remains valid if we replace inequality (3) by the
following one

F(d(hz, fx))+F (d(ky,9y))
2

+ b(d(h:c,k‘y))/ w(t)dt
0
F(d(hxygy));rf(d(ky,fﬁ))

+ c(d(hx,k:y))/ w(t)dt.
0

Corollary 3.5. Let f and h be self-mappings of a metric space (X,d). As-
sume that h is continuous, the pair (f,h) is subcompatible and satisfies the
equality

F(d(fz.fy)) F(d(ha,hy))
/ w(t)ydt < a(d(hz, hy))/ w(t)dt
0 0

F(d(ha,fx))+F (d(hy,fy))
+ b(d(h:v,hy))/ w(t)dt
0
min{/ (d(hz,fy)),F (d(hy,fz))}
+ c(d(hx,hy))/ w(t)dt,
0
for all x, y in X, where F, w, a, b and ¢ are as in Theorem 3.5. Then, f

and h have a unique common fixed point.

Corollary 3.6. Let f, g, h : X — X be mappings satisfying the following
mequality

F(d(fz,9y)) F (d(ha;hy))
/ w(t)dt < a(d(hx,hy))/ w(t)dt
0 0
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+ b(d(hz, hy)) w(t)dt

/I (d(ha,fz))+F (d(hy,gy))
0
min{f (d(hz,gy)),F (d(hy,fz))}
+ eldlha ) [ wit) dt,
0
for all x, y in X, where F, w, a, b and ¢ are as in Theorem 3.5. If h is
continuous and the pairs (f,h) and (g, h) are subcompatible, then, f, g and

h have a unique common fized point.
Now, we give a generalization of Theorem 3.5.

Theorem 3.6. Let (X,d) be a metric space, h, k, {fn}nen+ be mappings
from X into itself and F be an upper semi-continuous function of [0, 00) into
itself such that F (t) = 0 if and only if t = 0 and satisfying the inequality

F(d(fnz, frt19)) F (d(hz,ky))
/ w(tydt < a(d(hm,ky))/ w(t) dt
0 0
F(d(h, fna))+F (d(ky, fat1y))
+ b(d(hx,ky))/ w(t)dt
0
min{f (d(hz,fnt+19)).F (d(ky,frnz))}
v cld(ha, ky)) / w(t) dt,
0
for all z, y in X, where w € , a, b, ¢ : [0,00) — [0,1) are upper semi-

continuous and satisfying the condition
a(t)+c(t) <1, t>0.

If the pairs (fn,h) and (fn+1,k) are subcompatible and h and k are contin-
uous, then h, k and { f,}nen+ have a unique common fized point.
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